29th Annual RPUG Conference Deriver, CD November 14-17

Exploring Pavement Texture and Surface Friction Using Soft Computing Techniques

Students: Guangwei Yang, You Zhan, Ace Fei, Allen Zhang

Pls: Joshua Q. Li & Kelvin C.P. Wang

School of Civil and Environmental Engineering

Oklahoma State University

<u>qiang.li@okstate.edu</u>

Background

- Pavement friction: the force resisting the relative motion between vehicle tire and pavement surface (contact method)
 - Static devices: British pendulum tester (BPT), dynamic friction tester (DFT)
 - High speed instruments: locked wheel skid trailer, grip tester - consuming water & tire with limited contact area
 - Depending on many factors, such as testing speed, temperature, water film, tire tread, traffic wander

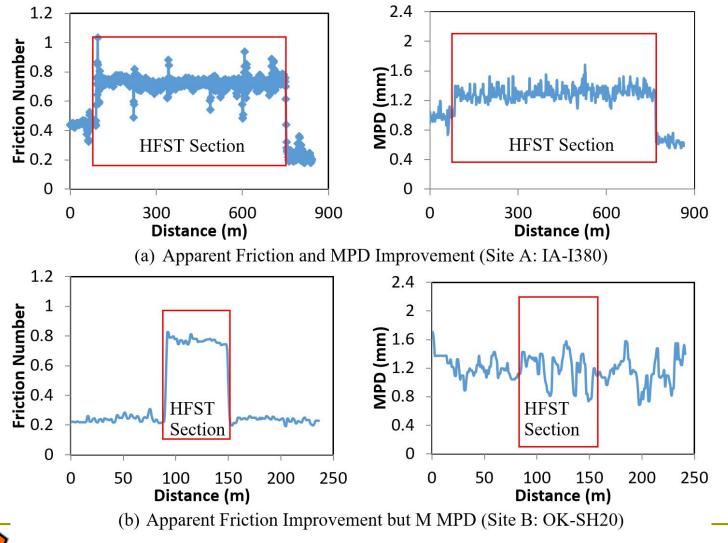
Background

- Pavement texture: the deviations of pavement surface from a true planar surface (Non-contact method)
 - Macrotexture: sand patch, CTM, high speed profiler; widely used indicators -MPD (2D) and MTD (3D)
 - Microtexture: primarily in laboratory (<0.5 mm)
 - Could be a surrogate of friction with more versatile applications through various vehicle-pavement simulations

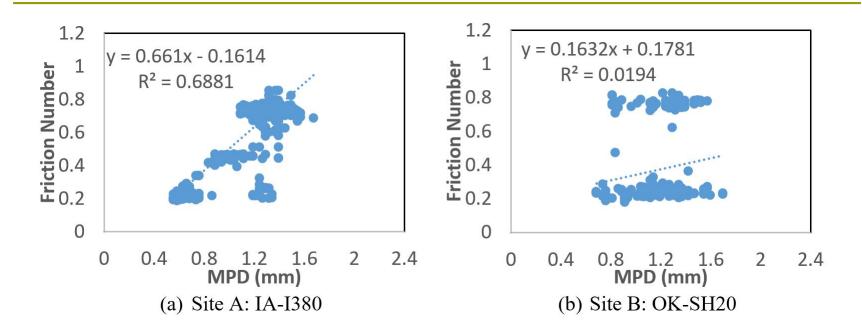
Problem Statement

- No consistent relationships between texture indicators and friction via traditional methodologies
 - MPD & MTD of macro-texture: very simplified representation of texture profiles, which could result in the lose of useful information from rich data
 - Micro-texture: limited in laboratory, high speed instrument not available

Preliminary Result



Preliminary Result



Conventional pavement texture indicator MPD: inadequate to predict pavement friction number consistently for diversified pavement surfaces

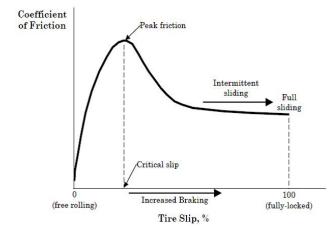
Potential Solutions

- Novel texture parameters, besides MPD & MTD, which correlate better with friction
 - From other disciplines, such as mechanical engineering, tire industries, et al.
 - Use both macro- and micro-texture indicators, combining with field and laboratory (based on surface topography) data sets
- Better use of macro-texture profile data
 - Extract information from profiles using advanced soft computing technologies
 - Directly use rich profile data as a whole for friction estimation

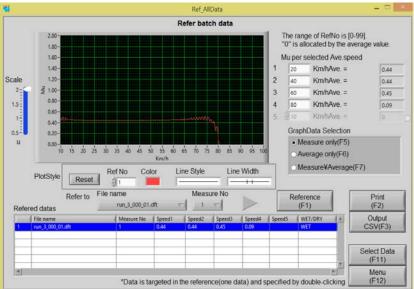
- Grip tester: continuous friction measurements
- Dynamic friction tester: portable device to measure the speed dependency of pavement friction
- AMES high speed profiler: MPD (macrotexture)
- LS-40 surface scanner: 0.01 mm resolution (macro- & micro-texture)

Grip Tester

- Continuously measure longitudinal friction
- Operating around the critical slip of an antilock braking system
- Much shorter testing section length requirement
- Airports and highways safety management



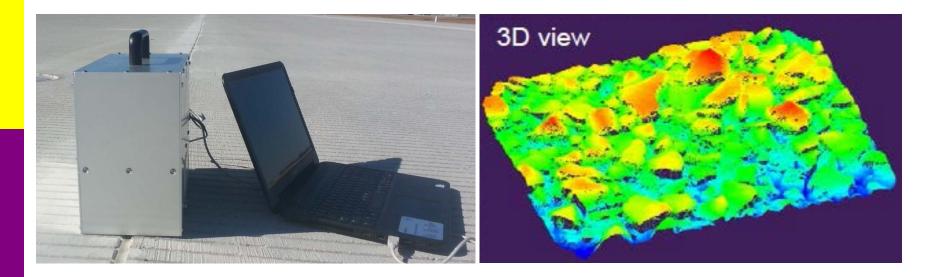
- Dynamic Friction Tester (DFT)
 - Portable device to measure the speed dependency of pavement friction
 - Acquiring friction at testing speed from 10 to 80 km/h



AMES 8300 High Speed Profiler

- Surface macro-texture data & standard profile data at highway speeds
- Mean Profile Depth (MPD)
- International Roughness Index (IRI)

- LS-40 Surface Analyzer
 - Data Pixel: 2048 x2448
 - Resolution: 0.01mm (0.0004'')
 - Pavement surface micro- & macro-texture



RPUG 2016

Wavelet based Analysis

- To decompose pavement macro-texture data into multi-scale characteristics
- To investigate the suitability of wavelet based indicators for pavement friction prediction
- AMES data vs. grip tester data
- Novel Texture Parameters
 - Five categories: height, volume, hybrid, spatial, and feature based parameters from various disciplines (24 indicators in total)
 - To examine the relationship between them and friction
 - LS-40 data vs. DFT data

RPUG 2017

- Wavelet analysis based evaluation of texture contribution to friction at macro- and microtexture levels
 - Butterworth filter: decompose high resolution texture profile data into macro- and micro-level
 - Wavelet transformation: calculate wavelet energy as texture indicator at macro- and micro-levels
 - Determine the dependency of pavement friction on macro- and micro-texture at different speeds
 - Investigate multi-scale texture within the critical depth of pavement

RPUG 2017

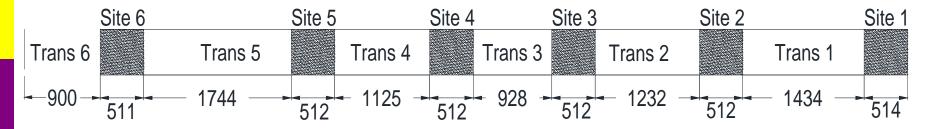
- Deep Learning (DL) based friction prediction model using pavement texture data
 - Investigate the suitability of DL architectures for friction prediction model
 - Develop Convolutional Neural Network (CNN), one of the most widely used DL methodologies, for training, validation, and testing
 - Evaluate the accuracy and performance of the developed CNN model

Methodology

- Wavelet based Analysis
 - Separate pavement macro- & micro-texture via Butterworth filter
 - Investigate the suitability of wavelet based indicators for pavement friction prediction
 - LS-40 data vs. DFT data
- DL based Analysis
 - FrictionNet: CNN based model for training, validation, and testing
 - Predict friction with texture data
 - AMES data vs. grip tester data

Part I Wavelet based Analysis

Data Source

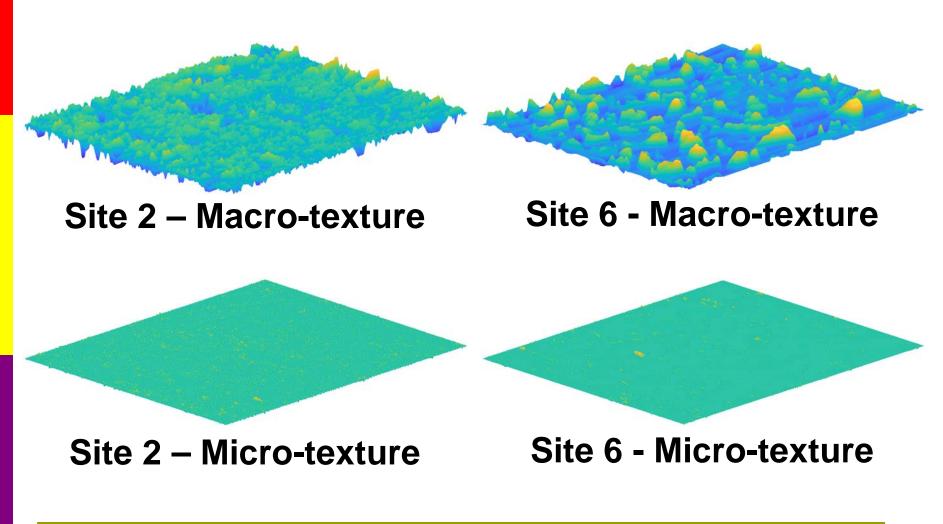


OKLAHOMA DOT SPR 2115, LONG TERM PAVEMENT PERFORMANCE MONITORING OF SIX LTPP SPS-10 SECTIONS IN OKLAHOMA WITH 3D LASER IMAGING

Wavelet Analysis

Collect High Resolution 3D Image & Friction Data

Wavelet Analysis



Butterworth Filter

Wavelet Analysis

Decompose macro- & micro-texture into combination of different wavelets

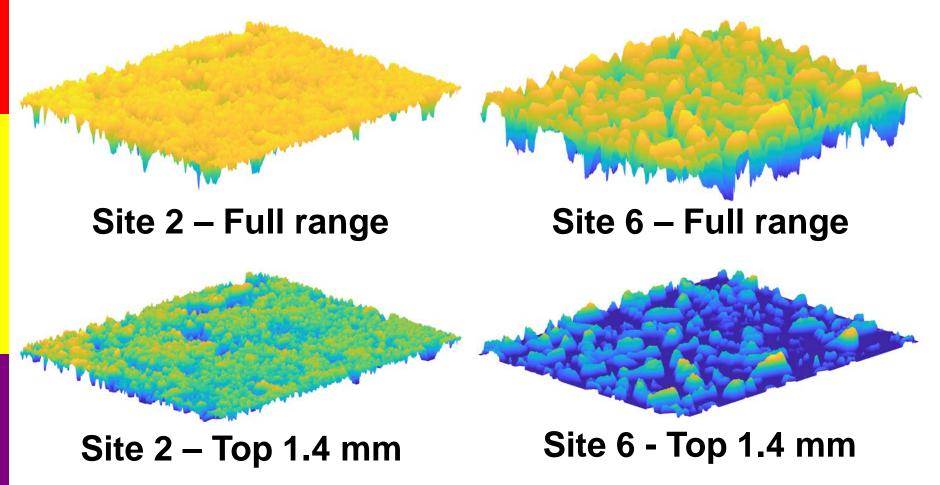
• Energy
$$E_{ni} = \frac{1}{N} \sum_{j,k} (D_{ni}(b_j, b_k))^2$$

✓ Total Energy (TE) $TE = \sum_{n=1}^{d} E_{ni}$

Critical Depth of Texture

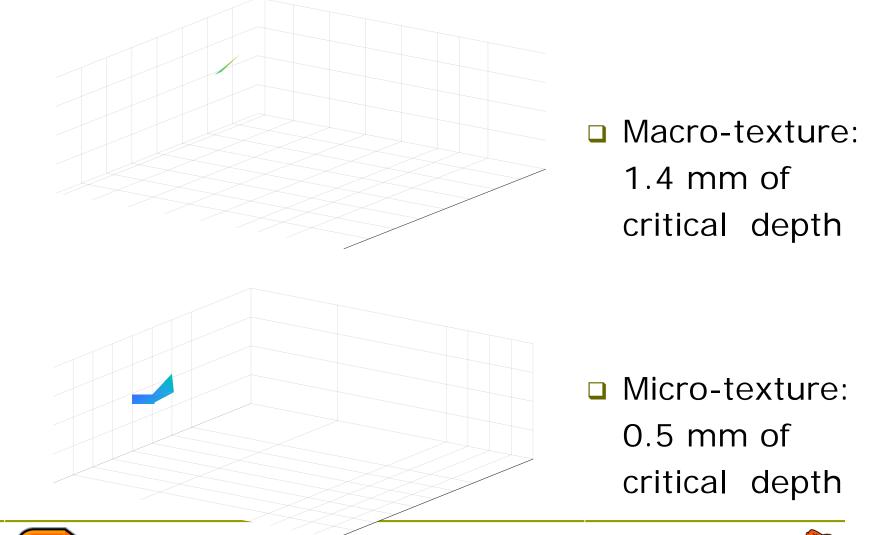
- Topmost asphalt layer: direct contact with tire that actually contribute to friction
 - Mean tire penetration depth (Kennedy et al. 2015):
 0.03 mm (passenger car) vs. 0.08 mm (truck)
- Critical depth of texture
 - Cut 3D surface into slices with various depths, while using the top portion to relate to friction
 - Correlation analysis between TE_{macro} & TE_{micro} with friction at different DFT speeds: to determine the critical depths at both texture levels

Critical Depth of Texture



Top topography analysis of a fractal surface

Critical Depth of Texture

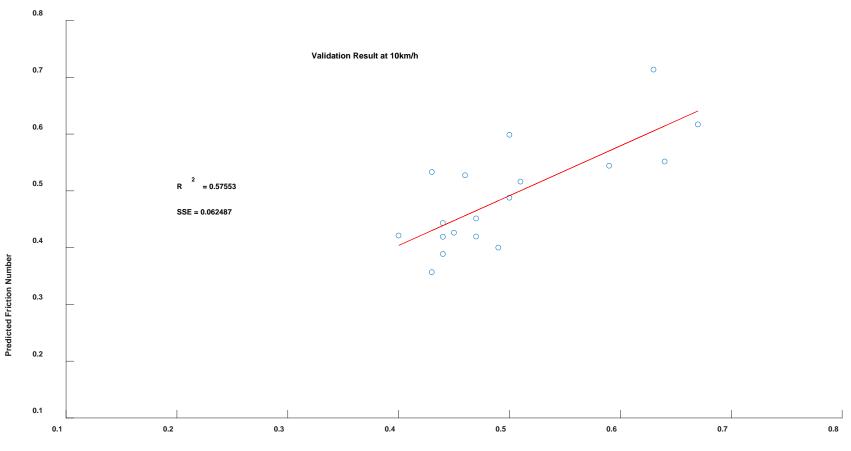


Friction Prediction Model

- 72 testing points on LTPP SPS-10: 75% for model development, 25% for validation
- Relate friction to TE_{macro} & TE_{micro} at the critical depth of texture
- Evaluate macro- and micro-texture contributions to DFT friction at different speeds
- Include ambient temperature (T) in the model

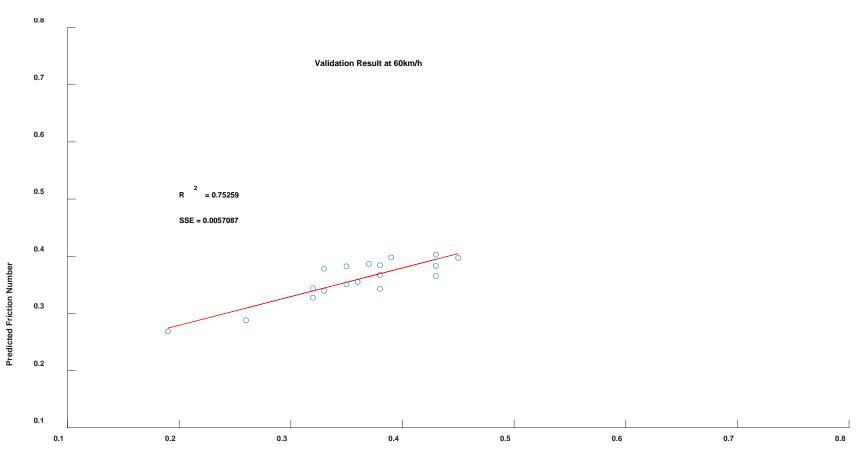
Friction Number = $a + \sum_{i=1}^{2} TE_i * b_i + T^*C$

Friction Prediction Model



Actual Friction Number

Friction Prediction Model



Actual Friction Number

Part II Deep Learning based Analysis

Data Source

FHWA, LONG TERM PERFORMANCE MONITORING OF HIGH FRICTION SURFACING TREATMENTS (HFST) SITES (3 YR)

Data Source

HFST Pavement (GA-140)

Rigid Pavement (OK-144)

Bridge Deck (WV-I64)

Grooved Flexible Pavement (MO-144)

Grooved Rigid Pavement (WI-194)

FHWA, LONG TERM PERFORMANCE MONITORING OF HIGH FRICTION SURFACING TREATMENTS (HFST) SITES (3 YR)

Deep Learning

a new area of Machine Learning research, which has been introduced with the objective of moving closer to one of its original goals: Artificial Intelligence"

AlphaGo Fan

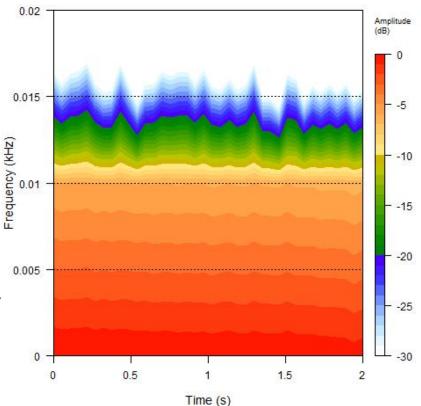
AlphaGo Lee

AlphaGo Master

AlphaGo Zero

Profile Spectrogram

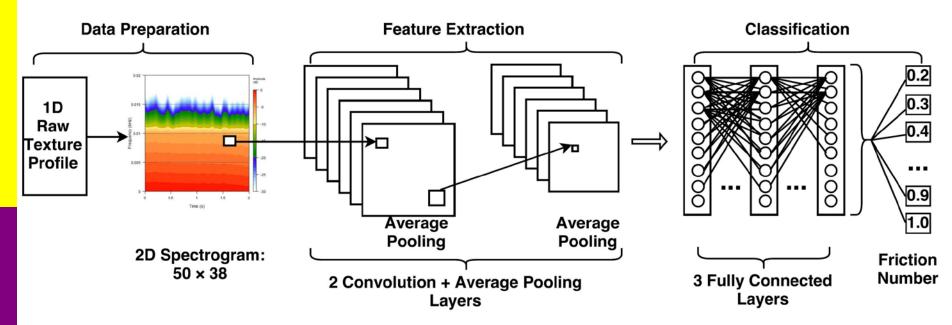
- Pair raw pavement texture profile with friction number for each 3-feet segment
- Spectrogram: a visual representation of the spectrum of signal frequencies as they vary with time or some other variable



Convolutional Neural Network (CNN)

FrcitionNet architecture

6 layers: 2 convolution, 3 fully connected, and
 1 output layer



CNN Architecture

Input: Spectrogram of texture profile

- Output: friction levels from 0.2 to 1.0 in 0.1 interval
- Tuned hyper-parameters: 606,409

Layer	# Parameters
Layer 1: Convolution	640
Layer 2: Convolution	55,392
Layer 3: Fully Connected	540,736
Layer 4: Fully Connected	6,240
Layer 5: Fully Connected	3,104
Layer 6: Output	297
Total	606,409

- 63,000 pairs of data: randomly select 80%, 10% and 10% data for training, validation, and testing
- **Training platform: MXNet**
- Training hardware: NVIDIA GeForce GTX TITAN Black
- Training time: 1.68 h

Training Techniques

- Learning method: Stochastic Gradient Descent
- Initialization of parameters: Xavier
- L2 regularization and Dropout: combat overfitting
- Cost function: cross-entropy

$$ext{CE(label, output)} = -\sum_i ext{label}_i ext{log(output}_i)$$

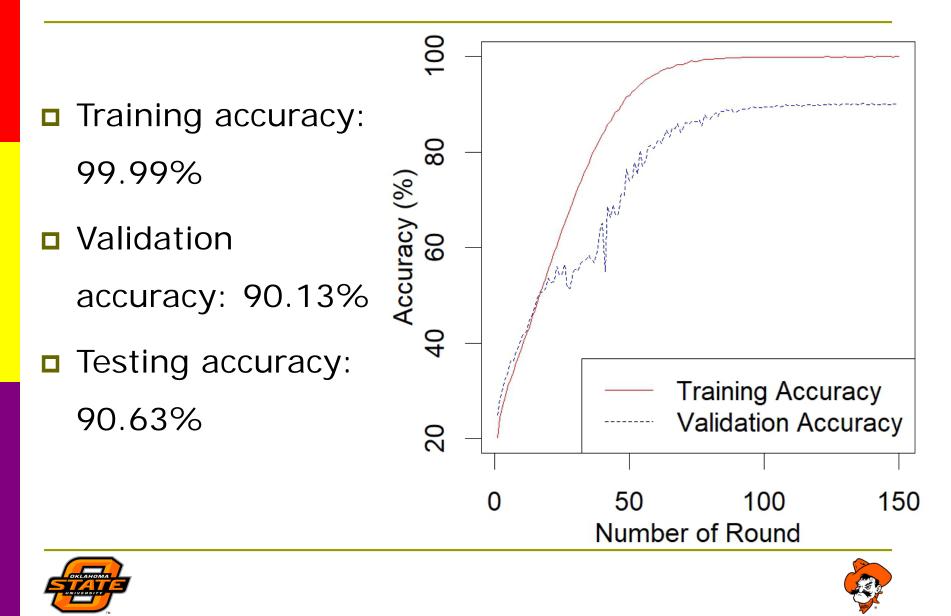
Training Techniques

Softmax function: probability distribution of predicted friction number

$$\operatorname{softmax}(x)_i = rac{exp(x_i)}{\sum_j exp(x_j)}$$

■ Accuracy: evaluate the goodness of CNN model $accuracy(y, \hat{y}) = \frac{1}{n} \sum_{i=1}^{n-1} 1(\hat{y}_i == y_i)$

Accuracy Summary



Conclusions

- Top 1.4 mm of pavement texture: critical portion in the context of tire-road contact
- Macro-texture: primarily contributions to friction at high speed
- Micro-texture: governs friction at low speed
- Ambient temperature: significant factor for friction performance

Conclusions

- Large amount of texture and friction data collected on diverse pavement surfaces
 - 50,400 pairs of data for training, 12,600 pairs of data for validation and testing
- FrictionNet: CNN based DL friction prediction model using pavement texture data
 - Six layers with more than 600,000 parameters
 - Achieve 99.99% training and 90.63% testing accuracy

Acknowledgements

Federal Highway Administration (FHWA)

Oklahoma Department of Transportation (ODOT)

29th Annual RPUG Conference Denver, CD November 14-17

Questions?

Joshua Q. Li <u>qiang.li@okstate.edu</u>

School of Civil and Environmental Engineering Oklahoma State University

